Deep Learning Architecture for UAV Traffic-Density Prediction
نویسندگان
چکیده
The research community has paid great attention to the prediction of air traffic flows. Nonetheless, examining patterns for unmanned aircraft management (UTM) is relatively sparse at present. Thus, this paper proposes a one-dimensional convolutional neural network and encoder-decoder LSTM framework integrate flow with intrinsic complexity metric. This adapted metric takes into account important differences between ATM UTM operations, such as dynamic structures airspace density. Additionally, proposed methodology been evaluated verified in simulation scenario environment, which drone delivery system that considered essential COVID-19 sample tests, package services from multiple post offices, an inspection railway infrastructure fire-surveillance tasks. Moreover, model also considers impacts other significant factors, including emergency static no-fly zones (NFZs), variations weather conditions. results show achieves smallest RMSE value all scenarios compared approaches. Specifically, error 8.34% lower than shallow (on average) 19.87% regression on average.
منابع مشابه
Traffic Prediction using a Deep Learning Paradigm
For many years intelligent transportation systems (ITS) have been collecting and processing huge amounts of data from numerous sensors to generate a ground truth of urban traffic. Such data has set the foundation of traffic theory, planning and simulation to create rule-based systems. It has also been used in many different studies in data-driven short-term traffic flow forecasting with promisi...
متن کاملMachine Learning for Traffic Prediction
Using machine learning for predicting traffic is described in the context of a competition organized using the TunedIT platform. A heuristic is proposed for reconstructing the route of a car in a street graph from a temporal stream of its coordinates. A resilient propagation neural network for approximating the average velocity on a given street from irregular time series of instantaneous veloc...
متن کاملA deep architecture for unified aesthetic prediction
Image aesthetics has become an important criterion for visual content curation on social media sites and media content repositories. Previous work on aesthetic prediction models in the computer vision community has focused on aesthetic score prediction or binary image labeling. However, raw aesthetic annotations are in the form of score histograms and provide richer and more precise information...
متن کاملDeep Learning Approach for Car Detection in UAV Imagery
This paper presents an automatic solution to the problem of detecting and counting cars in unmanned aerial vehicle (UAV) images. This is a challenging task given the very high spatial resolution of UAV images (on the order of a few centimetres) and the extremely high level of detail, which require suitable automatic analysis methods. Our proposed method begins by segmenting the input image into...
متن کاملTraffic Analysis with Deep Learning
Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Drones
سال: 2023
ISSN: ['2504-446X']
DOI: https://doi.org/10.3390/drones7020078